

Failure Models and Criteria for FRP
Under In-Plane or Three-Dimensional
Stress States Including Shear Non-
Linearity

NASA Technical Reports Server
(NTRS), et al., Silvestre T. Pinho

[DOWNLOAD PDF](#)

Failure Models and Criteria for Frp Under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity

By Silvestre T. Pinho

BiblioGov. Paperback. Book Condition: New. This item is printed on demand. Paperback. 72 pages. Dimensions: 9.7in. x 7.4in. x 0.1in. A set of three-dimensional failure criteria for laminated fiber-reinforced composites, denoted LaRC04, is proposed. The criteria are based on physical models for each failure mode and take into consideration non-linear matrix shear behaviour. The model for matrix compressive failure is based on the Mohr-Coulomb criterion and it predicts the fracture angle. Fiber kinking is triggered by an initial fiber misalignment angle and by the rotation of the fibers during compressive loading. The plane of fiber kinking is predicted by the model. LaRC04 consists of 6 expressions that can be used directly for design purposes. Several applications involving a broad range of load combinations are presented and compared to experimental data and other existing criteria. Predictions using LaRC04 correlate well with the experimental data, arguably better than most existing criteria. The good correlation seems to be attributable to the physical soundness of the underlying failure models. This item ships from La Vergne, TN. Paperback.

[READ ONLINE](#)
[8.33 MB]

Reviews

The publication is easy in read through safer to comprehend. It is actually loaded with wisdom and knowledge Its been printed in an extremely simple way and is particularly simply right after i finished reading through this pdf where actually modified me, affect the way i believe.

-- Ms. Clementina Cole V

This is the very best publication i have got read until now. It is definitely simplified but shocks within the fifty percent of the pdf. You may like how the article writer create this pdf.

-- Rosario Durgan